Saturday, December 25, 2010
GSLV-F06 Launch Failure
The S139 does have a very good record flying on both the PSLV and the GSLV, so it would come somewhat as a surprise if it did cause the failure. The strap-on boosters would be another suspect having previously failed on one of the GSLV flights.
It would be too early to debate the exact cause until there some official response from ISRO into what caused the failure.
Tuesday, October 26, 2010
RISAT-1 postponed to 2011

The satellite is supposed to be launched in the first half of 2011 according to the Chairman of ISRO. The Director of the Space Applications Center had previously stated that the satellite would be launched in mid-2011 in an article for the IEEE-GRSS Newsletter. It would used for mapping and managing natural disasters, besides amplifying defence surveillance capabilities.
Further technical parameters and information on the satellite can he found here.
RISAT-1
Friday, August 27, 2010
India To Launch GSAT-5P In October

BENGALURU, India — The Indian Space Research Organization (ISRO) is gearing up to launch the 2,000-kg. GSAT-5P communication satellite in October using a Geostationary Satellite Launch Vehicle (GSLV), an ISRO official tells AVIATION WEEK.
“Configured as an exclusive C-band communication satellite, GSAT-5P will carry 12 normal C-band transponders and six extended C-band transponders with wider coverage in uplink and downlink over Asia, Africa and Eastern Europe as well as zonal coverage,” the official says. “The spacecraft has a mission life of 12 years and [is] planned to be launched onboard GSLV-F06.”
The satellite is expected to expand existing telecommunication and television bandwidth. A Russian cryogenic engine will be powering the GSLV-F06; ISRO plans to launch a GSLV with an Indian-made cryogenic engine within a year. Meanwhile, former ISRO chief Madhavan Nair said in Bengaluru Aug. 22 that through combined efforts, India might launch a manned mission to the Moon by 2021.
“There are a lot of mysteries and hypotheses on the origin of the Moon, and probing into these could possibly throw light on the origin of the Earth, Solar System and even the universe,” he says. “Helium-3, emitted from the Sun and found on the Moon, could end the fossil fuel crisis in the future, though we need to do lot of explorations in this field.”
Monday, August 9, 2010
Indian Delegation in Russia
Signing of an agreement on cooperation in space exploration between chairman of ISRO, Dr. K Radhakrishnan and head of ROSCOSMOS, Antony Perminov on August 4th in Moscow.
Friday, July 9, 2010
GSLV-D3 Failure Analysis Report
The third developmental flight of Geosynchronous Satellite Launch Vehicle (GSLV-D3) conducted on April 15, 2010 from Satish Dhawan Space Centre SHAR, Sriharikota, primarily for the flight testing of indigenously developed Cryogenic Upper Stage (CUS), could not accomplish the mission objectives. Consequently, ISRO had instituted a two-tier process to carry out an in-depth analysis of the flight performance, identify the causes of failure and recommend corrective measures. The Failure Analysis Committee comprising multi-disciplinary experts completed the analysis and its findings were further reviewed by a National Group of Eminent Experts. These reviews have brought out that:
After incorporating necessary corrective measures, the flight testing of Indigenous Cryogenic Upper Stage on GSLV is targeted within a year. In the meantime, the next two GSLVs would fly with the available Russian Cryogenic Stages. |
Thursday, July 8, 2010
PICTURES: Indian Space Transportation System - Present Scenario and Future Directions
Important Observations:
- Slide 20 gives us an idea of the Indian interplanetary missions on the drawing board. The slide also gives the orbital and fly-by payload capacities of PSLV, GSLV and GSLV -Mk III to Mars, Venus and Asteroid (very vague definition in this case) respectively. The approximate date for robotic missions to Venus and asteroids is mentioned in Slide 34 as 2018 (Interplanetary missions beyond Mars). The Martian mission according to ISRO will take place only after 2015.
- Slide 20 mentions the performance specifications of GSLV-Mk III i.e 4.5 tons to GTO and 10 tons to 400 km LEO. In addition it clearly specifies the growth potential to as 5 to 6 tons to GTO, a previously speculated figure. Slide 14 illustrates the flight sequence of Mk III.
- Slide 25-Slide 28 gives some information of the RLV program. Slide 25 is the image of RLV-TD. Slide 26 shows the RLV with an air-breathing engine. Slides 27 and 28 shows the configuration and flight profile of an RLV-TSTO (Two Stage to Orbit) version.
- Slides 29-33 has information regarding the Indian Human Spaceflight Programme. The slides give information about the crew vehicle and the human-rated GSLV that would launch it and the mission profile. Slide 33 has already been discussed in detail in an earlier post.
Sunday, July 4, 2010
ISRO Heavy Lift Vehicle
In an earlier post Super Nova had reported on the preliminary concept of an Indian Lunar manned mission presented at IAC-2009. That concept envisaged the development of a crew launch vehicle and a Cargo Launch Vehicle with payload capabilities of 31 and 84 tons respectively to Low Earth Orbit.
The above image shows another concept Heavy Lift Vehicle (HLV) which would be able to haul 100 tons to LEO. What is interesting in this architecture is that no solid stages would be used on the vehicle. 4 SC460 Semi-cryogenic boosters with the SC800 first stage would generate the lift-off thrust for the vehicle. The C100 upper stage would probably serve as an Earth Departure stage (EDS) .
In addition to the HLV, the presentation slide also gives us an idea of the role that the GSLV-Mk III would play in lead up to Lunar manned mission and more importantly in the Indian Human Spaceflight Program.
As we know the present Human Spaceflight concept envisages the development of a crew capsule (Orbital Vehicle) which would be launched by the GSLV-Mk II. This capsule would probably not feature any docking system due to restriction in the payload capacity of GSLV-Mk II (around 5 tons).
Given the greater capability of Mk-III, ISRO plans to use the vehicle to launch a bigger, better equipped crew capsule which would be use to demonstrate rendezvous and docking in addition Extra Vehicular Activity (EVA).